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the attainment of steady state (during "swinging in"). 
According to Peterlin [4], the time necessary approximately 
amounts to 4D/v 2. 

Comparison of experimental concentration profiles (ref. 
I-1], Fig. 2) with values calculated from equations (4) and (5) 
shows relatively good conformity, at which, as in ref. [1], the 
time to reach the equilibrium has to be considered, as well as 
the fact that the precision of measurement diminishes with 
decreasing impulse count�9 

The occurrence of diffusion waves is of special interest for 
the co-operation of chemical reactions and diffusion. The 
present paper tries to extend the analogy between wave 
propagation and diffusion processes to the particular 
experimental case of diffusion with a moving boundary. 
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NOMENCLATURE 

radius of cylinder or sphere; 
complementary error function ; 
depth of thermocouple below heated surface; 
least-square function; 
Fourier number, at/L 2 or ctt/a 2 ; 
Bessel function of the first kind of order zero and 
unity, respectively; 
thermal conductivity; 
thickness of slab; 
heat flux at time t~ = iAt; 
heat flux at time t~ determined by exactly matching 
the Ihermocouple data over r future times; 
constant value of heat over the time interval q to 
q+, that minimizes the least-square error function 
F,; 
radial coordinate, also the number of future 
temperatures used in inverse solution; 
temperature; 
computed temperature at time q and depth E 
below the heated surface; 
value of T~ corresponding to ~ ;  
initial temperature; 
time; 
heat-flux weighting factor for a thermocouple at 
depth E, see equation (20); 
coordinate; 
experimental thermocouple data at time t~ = iAt. 

Greek symbols 
A Fo, differential Fourier number, ctAt/L 2 or aAt/a 2 ; 
Aq~, step change in heat flux, equation (2); 
At, time increment ; 
Zxr r 1 6 2  ~ O; 
a, thermal diffusivity; 
2, dummy time variable; 
v, eigenvalue in equations (4)-{6); 
r temperature response of a body initially at zero 

temperature and subjected to a unit step in heat 
flux, also termed sensitivity coefficient; 

r value of r at depth E and time ti; 
$, function representing decay of temperature profile 

if future heat-flux values are zero, see discussion 
following equation (9); 

temperature weighting factor for a thermocouple 
at depth E; see equation (16). 

INTRODUCTION 

TIlE INVERSE problem of heat conduction is the determination 
of surface temperature and/or heat flux from an interior 
measurement of temperature. For those problems to which 
Duhamers Theorem applies, Beck [1] introduced a technique 
for using measurements of future temperatures that allows for 
smaller computational steps than those allowed in the earlier 
technique of Stolz [2]. This note presents equations that 
permit an alternative physical interpretation of the process of 
using future temperature information, and gives additional 
insight into inverse heat conduction problems. 

ANALYSIS 

Starting with the 1-dim. form of Duhamers Theorem, for a 
time-varying heat flux, 

T(x,t) = To+ r d2+ r  (1) 
" i=O 

where 

Aqi = q~-q i - t ,  qo -~ O 

and where r t) is the temperature response of a body initially 
at zero temperature and subjected to a unit step in heat flux. 
The integral term in equation (1) allows for continuous 
variation of heat flux with time; the summation term accounts 
for discrete steps in heat flux. Many analytical solutions for 
bodies exposed to a step in heat flux are available in the 
literature; four solutions for common 1-dim. geometries are 
presented below. 

Semi-infinite solid, flux at x = 0 



Shorter Communicat ions  303 

Planar slab, 
;urface 

~(x, Ok ~t 
L 

thickness L, f lux  at x = O, insulated inactit'e 

i [ x'~x 

--2 77,,/ cos v. , v , = n ~  (4) 
n= 1 "n 

lolid cylinder, radius a, f lux at r = a 

c~(r, t)k 2xt r 2 . 1 2 ~, ~ e-*~(''~ J~ 

a a 2 + 2a 2 4 ,,= t v~J0(v,) ' 

Jx(v,) = 0, positive roots. (5) 

;Mid sphere, radius a , f lux  at r = a 

~(r,t)k 3=t 1 [5r  2 '~ 
a a~ + ~ , ~ - - 3  ) 

- 2 ~  ~ sin(v"r/a)e- '~"~ tan v. = v.. (6) 
~ ,2 s i n  v n =1 ~n 

for each of the above finite-body cases, the infinite-series term 
pproaches zero for large values of time, and the response is 
�9 near with time. For large Fo = ~,t/L z (or ~t/a2), the rate at 
r the temperature of the cylinder rises is twice as fast as the 
ate for the plate, and the rate for the sphere is three times as 
1st as the rate for the plate at a given heat flux. 

Assuming that the temperature profile is known at time t u 
= MAt, the temperature at any arbitrary depth E below the 

�9 eated surface can be calculated. If the heat flux consists of  a 
.~ries of  steps, the integral term in equation (1) is zero, and the 
:mperature at location E can be calculated from equation (1) 
s follows: 

M 

E'I+I = To + ~. .,t-l*2 qiA4'E + q.u + t AqSr t (7a) 
l = l  

M 
E " + 2  = To+ Z M - - i + 3  2 I qiA~bE + q.u + tA#SE + q.~r + 2AqS~ (7b) 

i = l  

St j 

~.,t+~ = To+ Z qiAqSV-'+l+' + ~.qu+iadP~ - '+ '  (7c) 
I = l  i = l  

ith A~ ~ = ~ -  ff~- x, 4)o = 0. It will be convenient to define a 
:mperature r  as 

M 

r To + X" ~ ^.4,, 'a-~+. i+1 = z~ ' ~ ' ~  (8) 
I=1  

that equation (7c) can be written as 

1 
T'M+Jg ---- ~'E't'MJ+ ~ qm + iA2"J- i + , e r  t . (9) 

, physical terms, $is~ti ~ is the temperature profile at time M A t  
)rresponding to the sequence of heat-flux values 

.~,.ua represents the decay of this 'initial' t , q2 , . . . , qn ;  ~'(xl 
mperature  profile if the heat flux is set to zero for the j  future 
me steps (qM+t = qxt+2 . . . . .  q.~t.~ = 0) Because we are 
matly concerned with the temperature at a location E, t/,~ t'j 
:presents the decay o f a  thermocouple at location E.when all 
lure heal flux terms are set to zero. 
The  Beck procedure is to determine the heat flux that 
inimizes the least-square error between r future tempera- 
~res as computed from equation (9) and the experimental 
.ermocouple data. The least-square error is 

F, = ~ (Tiff §  y.u+l)2. (10) 

Minimizing F,  with respect to q.,t +k gives 

OF, 
= 2 X ( T ~ " ' -  r . ' t - )  ~fi" = 0, 

-i-j 

cq.u + l ~ = t cq.u +l 

k =  1,2 . . . . .  r. (11) 

To evaluate the sensitivity coefficients OT~*l/dq.u+t, Beck 
made the temporary assumption that qn + t = q.~t + 2 = q.~t +�9 
= q.u + t- Under  this assumption,  

O TiU + J O T~U + J 
6 .  (12) 

cq.~t+t cq.u+l 

Because of the temporary assumpt ion of a constant  heat flux, 
equation (11) reduces to a single equation for the single 
unknown heat flux qu+ t. 

~. c~iz( Y'U +'r ,J) 

q.u+t j=1 (13) 

, /=1 

Equation (13) is similar to the result first developed by Beck. 
For r = 1, the Beck method reduces to the Stolz method in 
which the thermocouple data are matched exactly. The 
sensitivity coefficients q~. must  be calculated from equations 
(3)-(6) or other appropriate relationships before equation (13) 
can be applied. 

An alternative and possibly more  enlightening form of 
equation (1 3) can be developed. After the heat flux ,q.u § t has 
been calculated, the direct problem is then solved, yielding a 
temperature at thermocouple depth E. This computed 
thermocouple temperature corresponding to '~u+~ will be 
denoted by 7'~ T M .  Ifall  values of  TiE, j = 1,2 . . . .  are known, 
then the Stolz procedure could conceivably be used to 
determine the heat flux that exactly matches the lhermocouple 
data. From equation (9), the heat flux q,u+ i and computed 
thermocouple temperature T M + ~ are related through a single 
linear relationship. 

, ~ / I f +  I M , I  - I = ~ r  +q.u+l~bE �9 (14) 

Substituting equation (13) into equation (14) gives 

4~'~ ~ 4,~(Y'~-44 t'~) 
~ r y  § ~ _ C 4 t . ,  _ j =  , 

(~)" 
k = l  

o r  

7"~'+t--$~ t't = ~ t~(Y'~'+J--r  Lj) (15) 
J = l  

where ~ is a temperature weighting factor defined by 

o~ = , (16) 

Z (,~9 2 
k = l  

Equation (15) indicates that the inverse solution obtained by 
using data  from r future times is the same as the solution 
obtained by averaging the experimental thermocouple data in 
a certain way and exactly matching the averaged thermo- 
couple data  ( ~,~r + x). The weighting factors ~ depend only on 
the sensitivity coefficients, and can be calculated before any 
inverse calculations. Note, however, it is not  possible to first 
' smooth '  the entire thermocouple data set and then use the 
Stolz procedure to exactly match the smoothed data  because 
the r t'~ functions must  be continuously re-calculated as the 
inverse solution evolves. 

It is possible to convert the temperature-averaging equation 
(15) into a heat-flux-averaging equation. Let c~.u. ~ represent 
the heat flux at time (M+/)At  obtained by exactly matching 
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the sequence of thermocouple data points y u , t ,  
1,,.~t+2,..., yAf+i and starting from the temperature profile 
corresponding to qu- Applying the discrete form of Duhamel's 
theorem, equation (9), to this situation gives 

1 
yU + j__(tl~l,j = ~ q M + l A ~ j E - i + ,  (17) 

and substituting equation (17) into equation (13) gives 

q.~f +i  ~E 

Cl.~l+x j = x  i = l  (18) 

j=! 

If the summation terms of q u + t  are expanded and its 
coefficients are collected, equation (18) can be written as 

qu+l = ~.. W~Clu+i (19) 
I = l  

Table !. Asymptotic values of temperature and heat-flux 
weighting coefficients (~At/L 2 large) 

r t D  I (,02 ~jj3 ( , ) 4 .  0 9  5 

I 1.0 . . . .  

2 0.2 0.4 . . . .  

3 0 .0714  0 .1429  0 .2143 - -  - -  

4 0 .0333 0 .0667  0 . I 0 0 0  0.1333 - -  

5 0.0182 0.0364 0.0545 0.0727 0.0909 

F W 1 ~ V 2  ,~ ~,,3 W4 W5 

I 1.0 . . . .  

2 0.6 0,4 - -  - -  - -  

3 0 .4286 0.3571 0 .2143 - -  - -  

4 0 .3333 0 .3000  0 .2333 0 .1333 - -  

5 0.2727 0.2545 0.2182 0.1636 0.0909 
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Fxc,. 1. Variation of temperature weighting coefficients with ctAt]lI for r = 2, planar geometry, insulation 
inactive surface: (a) toLt.; (b) (o~. 
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FIG. 2. Variation of heat flux weighting coefficient with aAt/L 2 for r = 2, planar geometry, insulated inactive 
surface. 

where the heat-flux weighting factors w~ are given by 

,,~ k=, , A ~  = 4 ? - q ~ s - ' .  (20) 

k = l  

Equation (19) indicates that the heat flux determined from the 
Beck procedure is a weighted average of the r heat flux values 
0M+~, i = 1 ,2 , . . . , r  determined by exactly matching the r 
future thermocouple data points. It can be shown that the 
heat-flux weighting factors sum to unity 

w~r = 1.0. (21) 
I = 1  

The heat-flux weighting factors w~ depend only on the 
sensitivity coefficients and require calculation only once for 
problems in which Duhamel's Theorem is valid. 

Both the temperature and heat-flux weighting factors take 
on very simple forms for l-dim, geometries when ctAt/L 2 or 
:tAt~a: is large. For this condition, the series terms in equations 
(4)-(6) can be ignored. The sensitivity coefficients vary linearly 
with time and are approximately independent of thermo- 
couple depth. It can be demonstrated that 

~k~ 
k = l  

,vAt 

~ k large - i f -  limit. (221 

Note that planar, cylindrical, and spherical geometries all have 
the same weighting factors for the limiting case of large etAt/L 2 
and are independent ofthermocouple depth.Table I tabulates 

the results of equation (22) for r = 1-5. When all values of w~, 
i = 1,2 . . . . .  r, are considered, w~ will ahvays be the largest. 

Figures 1 and 2 present the temperature and heat-flux 
weighting coefficients as a function of ~At/L 2 for planar 
geometry, insulated inactive surface, and r = 2. For small 
aAt/L 2, the influence of the future data becomes less and less. 
This gives some insight into why there are potential stability 
problems for small values of ctAt/L z. Smaller values of :tAt/L 2 
may require large values ofr  for stability. For a given value of 
aAt/L 2, increasing the thermocouple depth ElL increases w~:; 
this implies that future information is given a smaller 
weighting. 

SUMMARY 

An alternative interpretation of Beck's integral solution of 
the inverse problem of heat conduction has been presented. 
The use of future temperature information and the 
minimization of the least-square error between computed and 
experimental thermocouple data can be interpreted as (1) 
matching the thermocouple data exactly over r future times 
and (2) averaging the resulting heat flux values 0.~z + i according 
to equation (19). Limiting values of temperature and heat-flux 
weighting coefficients for large values of czAt/L z are presented. 
Typical values ofto and w are presented for r = 2 and a planar 
geometry. 
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